论文标题
准模型空间,并应用于准字母的calderón-lozanovski \uı空间
Quasi-modular spaces with applications to quasi-normed Calderón-Lozanovski\uı spaces
论文作者
论文摘要
在本文中,我们介绍了准模块化的概念,并证明了单位准模数球的各个Minkowski功能成为准标准。这样,我们参考并完成与分别导致F-norm和标准的模块化和凸模块的概念相关的众所周知的理论。我们使用所获得的结果来考虑准字母的calderón-lozanovski \uıspaces $e_φ$的基本属性,其中较低的matuszewska-orlicz index $α_φ$扮演关键角色。我们还提供了许多定理,以$ l^{\ infty} $在空间中的$ l^{\ infty} $的不同副本中,以$ e $的合适属性和函数$φ$的自然语言为$e_φ$。我们的研究以一种可能的一般性进行。
In this paper we introduce the notion of a quasi-modular and we prove that the respective Minkowski functional of the unit quasi-modular ball becomes a quasi-norm. In this way, we refer to and complete the well-known theory related to the notions of a modular and a convex modular that lead to the F-norm and to the norm, respectively. We use the obtained results to consider basic properties of quasi-normed Calderón-Lozanovski\uı spaces $E_φ$, where the lower Matuszewska-Orlicz index $α_φ$ plays the key role. We also give a number of theorems concerning different copies of $l^{\infty}$ in the spaces $E_φ$ in the natural language of suitable properties of the space $E$ and the function $φ$. Our studies are conducted in a full possible generality.