论文标题
Clannish代数为正式代表类型
Clannish algebras are of amenable representation type
论文作者
论文摘要
我们重新访问G. Elek的Amenable表示类型的概念,其中代数的特征是每个不可分解的模块都是“几乎”“几乎”有限维度模块的直接总和。我们给出了一个新的证据,证明他的结果表明,字符串代数是可以依靠的,它依赖于不可分解的字符串和频段模块的系数的平面性。然后,使用与图形论的这种连接,我们证明了倾斜代数也是可amen的类型。
We revisit G. Elek's notion of amenable representation type, where algebras are characterised by every indecomposable module being "almost" the direct sum of modules of bounded dimension. We give a new proof of his result that string algebras are amenable that relies on the planarity of the coefficient quivers of indecomposable string and band modules. Using this connection to graph theory, we then show that clannish algebras are also of amenable type.