论文标题

具有随机初始条件的Kardar-Parisi-Zhang界面放松中的精确短时高度分布和动态相变

Exact short-time height distribution and dynamical phase transition in the relaxation of a Kardar-Parisi-Zhang interface with random initial condition

论文作者

Smith, Naftali R.

论文摘要

我们考虑单点高度的放松(无噪声)统计数据$ h = h(x = 0,t)$,其中$ h(x,t)$是从布朗(随机)初始条件开始的一维kardar-parisi-zhang(kpz)界面的一维kardar-parisi-zhang(kpz)界面的不断发展的高度。我们发现,在短时间内,$ h $的分布采用相同的缩放表格$ - \ ln \ Mathcal {p} \ left(H,h,t \ right)= s \ left(h \ right)/\ sqrt {t} $与kpz界面驱动的h noise和我们的噪声驱动器的分布,我们找到了确切的大型大数据函数$ s(h)$ s(h)。在临界值$ h = h_c $的情况下,$ s(h)$跳跃的第二个导数,发出动态相变(DPT)。此外,我们确切地计算了导致给定$ H $的接口的最可能历史记录,并表明DPT与接口的镜子对称性$ x \ leftrightArrow -x $相关。反过来,我们发现这种对称性破坏是与$ s(h)$密切相关的大型传播函数的非凸性的结果,并描述了一个类似的问题,但在半空间中。此外,关键点$ H_C $与半空间问题的大差异功能的拐点有关。

We consider the relaxation (noise-free) statistics of the one-point height $H=h(x=0,t)$ where $h(x,t)$ is the evolving height of a one-dimensional Kardar-Parisi-Zhang (KPZ) interface, starting from a Brownian (random) initial condition. We find that, at short times, the distribution of $H$ takes the same scaling form $-\ln\mathcal{P}\left(H,t\right)=S\left(H\right)/\sqrt{t}$ as the distribution of H for the KPZ interface driven by noise, and we find the exact large-deviation function $S(H)$ analytically. At a critical value $H=H_c$, the second derivative of $S(H)$ jumps, signaling a dynamical phase transition (DPT). Furthermore, we calculate exactly the most likely history of the interface that leads to a given $H$, and show that the DPT is associated with spontaneous breaking of the mirror symmetry $x \leftrightarrow -x$ of the interface. In turn, we find that this symmetry breaking is a consequence of the non-convexity of a large-deviation function that is closely related to $S(H)$, and describes a similar problem but in half space. Moreover, the critical point $H_c$ is related to the inflection point of the large-deviation function of the half-space problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源