论文标题

RRWAVENET:紧凑的端到端多尺度残差CNN,用于强大的PPG呼吸率估计

RRWaveNet: A Compact End-to-End Multi-Scale Residual CNN for Robust PPG Respiratory Rate Estimation

论文作者

Osathitporn, Pongpanut, Sawadwuthikul, Guntitat, Thuwajit, Punnawish, Ueafuea, Kawisara, Mateepithaktham, Thee, Kunaseth, Narin, Choksatchawathi, Tanut, Punyabukkana, Proadpran, Mignot, Emmanuel, Wilaiprasitporn, Theerawit

论文摘要

呼吸率(RR)是重要的生物标志物,因为RR变化可以反映严重的医学事件,例如心脏病,肺部疾病和睡眠障碍。不幸的是,标准手动RR计数容易出现人为错误,无法连续执行。这项研究提出了一种连续估计RR,RRWAVENET的方法。该方法是一种紧凑的端到端深度学习模型,它不需要特征工程,并且可以将低成本的原始光摄影学(PPG)用作输入信号。对rrwavenet进行了独立于主题的测试,并与四个数据集(BIDMC,Capnobase,Wesad和Sensai)中的基线进行了比较,并使用三个窗口尺寸(16、32和64秒)进行了比较。 RRWAVENET优于最佳窗口大小的平均绝对误差的当前最新方法,为1.66 \ pm 1.01、1.59 \ pm 1.08、1.92 \ pm 0.96和1.23 \ pm 0.61呼吸0.61每分钟呼吸。在远程监视设置(例如在WESAD和SENSAI数据集中),我们应用传输学习以使用其他两个ICU数据集作为预处理数据集来提高性能,从而将MAE降低高达21美元$ \%$。这表明该模型允许对负担得起且可穿戴设备的RR进行准确且实用的估计。我们的研究还显示了远程RR监测在远程医疗和家里的可行性。

Respiratory rate (RR) is an important biomarker as RR changes can reflect severe medical events such as heart disease, lung disease, and sleep disorders. Unfortunately, standard manual RR counting is prone to human error and cannot be performed continuously. This study proposes a method for continuously estimating RR, RRWaveNet. The method is a compact end-to-end deep learning model which does not require feature engineering and can use low-cost raw photoplethysmography (PPG) as input signal. RRWaveNet was tested subject-independently and compared to baseline in four datasets (BIDMC, CapnoBase, WESAD, and SensAI) and using three window sizes (16, 32, and 64 seconds). RRWaveNet outperformed current state-of-the-art methods with mean absolute errors at optimal window size of 1.66 \pm 1.01, 1.59 \pm 1.08, 1.92 \pm 0.96 and 1.23 \pm 0.61 breaths per minute for each dataset. In remote monitoring settings, such as in the WESAD and SensAI datasets, we apply transfer learning to improve the performance using two other ICU datasets as pretraining datasets, reducing the MAE by up to 21$\%$. This shows that this model allows accurate and practical estimation of RR on affordable and wearable devices. Our study also shows feasibility of remote RR monitoring in the context of telemedicine and at home.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源