论文标题

贝叶斯潜在可变变量共同敲击模型在遥感中以质量标记的观测值

Bayesian Latent Variable Co-kriging Model in Remote Sensing for Observations with Quality Flagged

论文作者

Konomi, Bledar A., Kang, Emily L., Almomani, Ayat, Hobbs, Jonathan

论文摘要

遥感数据产品通常包括高质量的标志,这些标志会告知用户相关的观察结果是良好,可接受还是不可靠的品质。但是,在遥感数据分析中未考虑有关数据保真度的此类信息。由NASA的Aqua卫星上的大气红外音器(AIRS)仪器观察到的动机,我们提出了一个潜在可变的共同策略模型,该模型与可分开的高斯流程,以分析大型质量贴上远程远程感应数据集以及其相关优质信息。我们通过插定机制将大量协方差矩阵分解为使用其输入结构的单独计算有效组件,从而增强了后验分布。在增强的后部,我们开发了马尔可夫链蒙特卡洛(MCMC)程序,该程序主要由有条件分布的直接模拟组成。此外,我们提出了一个计算有效的递归预测程序。我们将提出的方法应用于来自Airs仪器的空气温度数据。我们表明,与不说质量标志的模型相比,在我们提出的模型中纳入质量标志信息可以大大提高预测性能。

Remote sensing data products often include quality flags that inform users whether the associated observations are of good, acceptable or unreliable qualities. However, such information on data fidelity is not considered in remote sensing data analyses. Motivated by observations from the Atmospheric Infrared Sounder (AIRS) instrument on board NASA's Aqua satellite, we propose a latent variable co-kriging model with separable Gaussian processes to analyze large quality-flagged remote sensing data sets together with their associated quality information. We augment the posterior distribution by an imputation mechanism to decompose large covariance matrices into separate computationally efficient components taking advantage of their input structure. Within the augmented posterior, we develop a Markov chain Monte Carlo (MCMC) procedure that mostly consists of direct simulations from conditional distributions. In addition, we propose a computationally efficient recursive prediction procedure. We apply the proposed method to air temperature data from the AIRS instrument. We show that incorporating quality flag information in our proposed model substantially improves the prediction performance compared to models that do not account for quality flags.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源