论文标题
一个计算界面,用于在低数据设置中转化非结构化语言的战略意图
A Computational Interface to Translate Strategic Intent from Unstructured Language in a Low-Data Setting
论文作者
论文摘要
许多现实世界的任务都涉及混合定位设置,其中人类和AI系统会协作执行任务。尽管已经为使人类通过语言确切地指定代理人应如何完成任务(即低级规范)进行了重要的工作,但先前的工作缺乏解释人类指挥官的高级战略意图。从语言中解析战略意图将使自主系统在无需频繁的指导或指导的情况下根据用户的计划独立运行。在本文中,我们构建了一个计算界面,能够以目标和约束形式将非结构化语言策略转化为可行的意图。利用游戏环境,我们收集了一个超过1000个示例的数据集,将语言策略映射到相应的目标和约束,并表明我们的模型在该数据集中训练,在从语言中推断出策略意图(即,目标和约束),从该数据集中进行了训练,从而极大地超过了人类口译员的表现(p <0.05)。此外,我们表明我们的模型(12500万参数)在低数据设置中明显优于此任务(p <0.05)的模型。
Many real-world tasks involve a mixed-initiative setup, wherein humans and AI systems collaboratively perform a task. While significant work has been conducted towards enabling humans to specify, through language, exactly how an agent should complete a task (i.e., low-level specification), prior work lacks on interpreting the high-level strategic intent of the human commanders. Parsing strategic intent from language will allow autonomous systems to independently operate according to the user's plan without frequent guidance or instruction. In this paper, we build a computational interface capable of translating unstructured language strategies into actionable intent in the form of goals and constraints. Leveraging a game environment, we collect a dataset of over 1000 examples, mapping language strategies to the corresponding goals and constraints, and show that our model, trained on this dataset, significantly outperforms human interpreters in inferring strategic intent (i.e., goals and constraints) from language (p < 0.05). Furthermore, we show that our model (125M parameters) significantly outperforms ChatGPT for this task (p < 0.05) in a low-data setting.