论文标题

SMPL-IK:AI驱动的艺术工作流程的学习形态学 - 意识到的逆运动流程学

SMPL-IK: Learned Morphology-Aware Inverse Kinematics for AI Driven Artistic Workflows

论文作者

Voleti, Vikram, Oreshkin, Boris N., Bocquelet, Florent, Harvey, Félix G., Ménard, Louis-Simon, Pal, Christopher

论文摘要

逆运动学(IK)系统通常相对于其输入特征很僵硬,因此需要将用户干预适应新骨架。在本文中,我们旨在创建一种适用于各种人类形态的灵活的,学到的IK求解器。我们扩展了最先进的机器学习IK求解器,以在著名的皮肤多人线性模型(SMPL)上运行。我们称我们的模型SMPL-IK,并表明当集成到实时3D软件中时,该扩展系统为定义新型AI-Asissist Animation Workfrows提供了机会。例如,通过允许用户在姿势角色时修改性别和身体形状,可以使姿势创作更加灵活。此外,当使用现有的姿势估计算法链接时,SMPL-IK通过允许用户从2D图像引导3D场景而加速摆姿势,同时允许进一步编辑。最后,我们提出了一种新颖的SMPL形状反转机制(SMPL-SI),将任意类人形特征映射到SMPL空间,使艺术家能够在自定义字符上利用SMPL-IK。除了显示提出的工具的定性演示外,我们还介绍了H36M和Amass数据集上的定量SMPL-IK基准。

Inverse Kinematics (IK) systems are often rigid with respect to their input character, thus requiring user intervention to be adapted to new skeletons. In this paper we aim at creating a flexible, learned IK solver applicable to a wide variety of human morphologies. We extend a state-of-the-art machine learning IK solver to operate on the well known Skinned Multi-Person Linear model (SMPL). We call our model SMPL-IK, and show that when integrated into real-time 3D software, this extended system opens up opportunities for defining novel AI-assisted animation workflows. For example, pose authoring can be made more flexible with SMPL-IK by allowing users to modify gender and body shape while posing a character. Additionally, when chained with existing pose estimation algorithms, SMPL-IK accelerates posing by allowing users to bootstrap 3D scenes from 2D images while allowing for further editing. Finally, we propose a novel SMPL Shape Inversion mechanism (SMPL-SI) to map arbitrary humanoid characters to the SMPL space, allowing artists to leverage SMPL-IK on custom characters. In addition to qualitative demos showing proposed tools, we present quantitative SMPL-IK baselines on the H36M and AMASS datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源