论文标题
自主系统的感知能力的安全评估
Safety Assessment for Autonomous Systems' Perception Capabilities
论文作者
论文摘要
在安全关键(SC)应用中,越来越多地提出或使用了自主系统(AS)。许多这样的系统利用复杂的传感器套件和处理来提供场景理解,从而为“决策”提供了信息。传感器处理通常利用机器学习(ML),并且必须在具有挑战性的环境中工作,此外,ML-Algorithms具有已知的局限性,例如,在物体分类中,错误 - 阴性或假启示剂的可能性。为常规SC系统开发的完善的安全性分析方法与AS所用的AS,ML或感应系统没有很好的匹配。本文提出了对良好的安全性分析方法的适应,以解决AS的感知系统的细节,包括解决环境效应和ML的潜在故障模式,并为选择特定的指南或提示集提供了一个理由,以解决安全性分析。它继续展示了如何使用分析结果来告知AS的设计和验证,并通过对公路车辆进行部分分析来说明新方法。本文中的插图主要基于光学传感,但是本文讨论了该方法对其他感应方式的适用性及其在更广泛的安全过程中的作用,以解决AS的整体功能。
Autonomous Systems (AS) are increasingly proposed, or used, in Safety Critical (SC) applications. Many such systems make use of sophisticated sensor suites and processing to provide scene understanding which informs the AS' decision-making. The sensor processing typically makes use of Machine Learning (ML) and has to work in challenging environments, further the ML-algorithms have known limitations,e.g., the possibility of false-negatives or false-positives in object classification. The well-established safety-analysis methods developed for conventional SC systems are not well-matched to AS, ML, or the sensing systems used by AS. This paper proposes an adaptation of well-established safety-analysis methods to address the specifics of perception-systems for AS, including addressing environmental effects and the potential failure-modes of ML, and provides a rationale for choosing particular sets of guidewords, or prompts, for safety-analysis. It goes on to show how the results of the analysis can be used to inform the design and verification of the AS and illustrates the new method by presenting a partial analysis of a road vehicle. Illustrations in the paper are primarily based on optical sensing, however the paper discusses the applicability of the method to other sensing modalities and its role in a wider safety process addressing the overall capabilities of AS.