论文标题

前面:基于三重注意的异质图异常检测方法

AHEAD: A Triple Attention Based Heterogeneous Graph Anomaly Detection Approach

论文作者

Yang, Shujie, Zhang, Binchi, Feng, Shangbin, Tan, Zhaoxuan, Zheng, Qinghua, Zhou, Jun, Luo, Minnan

论文摘要

由于其在许多有影响力的领域中的广泛应用,因此对归因网络的图形异常检测已成为普遍的研究主题。在实际情况下,属性网络中的节点和边缘通常显示出不同的异质性,即不同类型的节点的属性显示出大量的多样性,不同类型的关系代表了不同的含义。这些网络中异质性的各种角度,异常通常与大多数不同。但是,现有的图异常检测方法不能利用归因网络中的异质性,这与异常检测高度相关。鉴于这个问题,我们提出了前方的建议:基于编码器解码器框架的异质性无监督图异常检测方法。具体而言,对于编码器,我们设计了三个关注级别,即属性级别,节点类型级别和边缘级别的关注,以捕获网络结构的异质性,节点属性和单个节点的信息。在解码器中,我们利用结构,属性和节点类型重建项以获得每个节点的异常得分。广泛的实验表明,与无监督环境中的艺术品相比,在几个现实世界的异质信息网络上,前方的优势。进一步的实验验证了我们三重注意力,模型骨干和解码器的有效性和鲁棒性。

Graph anomaly detection on attributed networks has become a prevalent research topic due to its broad applications in many influential domains. In real-world scenarios, nodes and edges in attributed networks usually display distinct heterogeneity, i.e. attributes of different types of nodes show great variety, different types of relations represent diverse meanings. Anomalies usually perform differently from the majority in various perspectives of heterogeneity in these networks. However, existing graph anomaly detection approaches do not leverage heterogeneity in attributed networks, which is highly related to anomaly detection. In light of this problem, we propose AHEAD: a heterogeneity-aware unsupervised graph anomaly detection approach based on the encoder-decoder framework. Specifically, for the encoder, we design three levels of attention, i.e. attribute level, node type level, and edge level attentions to capture the heterogeneity of network structure, node properties and information of a single node, respectively. In the decoder, we exploit structure, attribute, and node type reconstruction terms to obtain an anomaly score for each node. Extensive experiments show the superiority of AHEAD on several real-world heterogeneous information networks compared with the state-of-arts in the unsupervised setting. Further experiments verify the effectiveness and robustness of our triple attention, model backbone, and decoder in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源