论文标题
最大化验证集的实用性,以实现不平衡的嘈杂标签元学习
Maximising the Utility of Validation Sets for Imbalanced Noisy-label Meta-learning
论文作者
论文摘要
元学习是一种处理不平衡和嘈杂标签学习的有效方法,但它取决于验证集,其中包含随机选择,手动标记和平衡的分布式样本。该验证集的随机选择和手动标记和平衡不仅是元学习的最佳选择,而且随着类的数量,它的缩放范围也很差。因此,最近的元学习论文提出了临时启发式方法自动构建和标记此验证集,但是这些启发式方法仍然是元学习的最佳选择。在本文中,我们分析了元学习算法,并提出了新标准,以根据以下方式表征验证集的效用:1)验证集的信息; 2)集合的班级分配余额; 3)集合标签的正确性。此外,我们提出了一种新的不平衡的嘈杂标签元学习(INOLML)算法,该算法会自动构建验证,该验证通过使用上面的标准来最大化其效用。我们的方法比以前的元学习方法显示出显着改进,并在几个基准上设定了新的最新技术。
Meta-learning is an effective method to handle imbalanced and noisy-label learning, but it depends on a validation set containing randomly selected, manually labelled and balanced distributed samples. The random selection and manual labelling and balancing of this validation set is not only sub-optimal for meta-learning, but it also scales poorly with the number of classes. Hence, recent meta-learning papers have proposed ad-hoc heuristics to automatically build and label this validation set, but these heuristics are still sub-optimal for meta-learning. In this paper, we analyse the meta-learning algorithm and propose new criteria to characterise the utility of the validation set, based on: 1) the informativeness of the validation set; 2) the class distribution balance of the set; and 3) the correctness of the labels of the set. Furthermore, we propose a new imbalanced noisy-label meta-learning (INOLML) algorithm that automatically builds a validation set by maximising its utility using the criteria above. Our method shows significant improvements over previous meta-learning approaches and sets the new state-of-the-art on several benchmarks.