论文标题

加权Sobolev空间中Camassa-Holm方程的Cauchy问题:长期和painlevé渐进性

The Cauchy problem of the Camassa-Holm equation in a weighted Sobolev space: Long-time and Painlevé asymptotics

论文作者

Xu, Kai, Yang, Yiling, Fan, Engui

论文摘要

基于Deift-Zhou最陡峭的下降方法的$ \ overline \ part $ - 总体化,我们将Camassa-Holm(CH)方程式的长期和Painlevé渐近学扩展到解决方案中,并在加权Sobolev Space $ h^{4,2}(4,2}(\ Mathbbbbbbbbbbbb {\ mathbbbb {r r} r} r})中,使用最初的数据使用初始数据。有了新的比例$(y,t)$和与初始值问题相关的RH问题,我们在不同的时空孤子区域中为CH方程的解决方案得出了不同的长期渐近扩展。 半平面$ \ {(y,t): - \ infty <y <\ iftty,\ t> 0 \} $分为四个渐近区域:1。快速衰减区域,$ y/t \ in( - \ infty,-1/4)$,带有错误$ $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {o}(o) 2。调制 - 苏里顿区域,$ y/t \ in(2,+\ infty)$,可以用带有残留错误$ \ MATHCAL {o}(t^{ - 1/2})$的调制 - solitons来表征结果。 3. Zakhrov-Manakov地区,(0,2)$和$ Y/T \ in(-1/4,0)$。渐近近似的特征是分散术语和残留错误$ \ MATHCAL {O}(T^{ - 3/4})$; 4。两个过渡区域,$ | y/t | \约2 $和$ | y/t | \大约-1/4 $,结果是通过painlevéii方程的解决方案来描述的,带有错误顺序$ \ mathcal {o}(t^{ - 1/2})$。

Based on the $\overline\partial$-generalization of the Deift-Zhou steepest descent method, we extend the long-time and Painlevé asymptotics for the Camassa-Holm (CH) equation to the solutions with initial data in a weighted Sobolev space $ H^{4,2}(\mathbb{R})$. With a new scale $(y,t)$ and a RH problem associated with the initial value problem,we derive different long time asymptotic expansions for the solutions of the CH equation in different space-time solitonic regions. The half-plane $\{ (y,t): -\infty <y<\infty, \ t> 0\}$ is divided into four asymptotic regions: 1. Fast decay region, $ y/t \in(-\infty,-1/4)$ with an error $\mathcal{O}(t^{-1/2})$; 2. Modulation-solitons region, $y/t \in(2,+\infty)$, the result can be characterized with an modulation-solitons with residual error $\mathcal{O}(t^{-1/2 })$; 3. Zakhrov-Manakov region,$y/t \in(0,2)$ and $y/t \in(-1/4,0)$. The asymptotic approximations is characterized by the dispersion term with residual error $\mathcal{O}(t^{-3/4})$; 4. Two transition regions, $|y/t|\approx 2$ and $|y/t| \approx -1/4$, the results are describe by the solution of Painlevé II equation with error order $\mathcal{O}(t^{-1/2})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源