论文标题
$ c(k)$空间的单位球的可塑性
Plasticity of the unit ball of some $C(K)$ spaces
论文作者
论文摘要
我们表明,如果$ k $是一个紧凑的Metrizable空间,累积点有限,那么$ c(k)$的封闭单位球是一个塑料公制空间,这意味着从$ b_ {c(k)} $上的任何非表达的两次射击本身都是等值测定的。我们还表明,如果$ k $是零维紧凑的豪斯多夫空间,具有密集的孤立点,那么任何非表达同构的同构$ b_ {c(k)} $都是等轴测图。
We show that if $K$ is a compact metrizable space with finitely many accumulation points, then the closed unit ball of $C(K)$ is a plastic metric space, which means that any non-expansive bijection from $B_{C(K)}$ onto itself is in fact an isometry. We also show that if $K$ is a zero-dimensional compact Hausdorff space with a dense set of isolated points, then any non-expansive homeomorphism of $B_{C(K)}$ is an isometry.