论文标题
高斯 - 骨网理论中的熵电流和液体 - 重力二元性
Entropy Current and Fluid-Gravity Duality in Gauss-Bonnet theory
论文作者
论文摘要
在小幅度膨胀的近似值内工作,最近在任何更高的衍生性重力理论中,在动态黑洞溶液的地平线上构建了熵电流。在本说明中,我们将这种地平线熵电流对齐到渐近广告中的边界熵电流,该电流是黑洞度量标准的,其双重描述就生活在ADS边界上的动态流体而言。该边界熵电流是使用一组映射功能构造的,该函数将地平线上的每个点与边界上的一个点相关联。我们已经将构造应用于爱因斯坦 - 加斯 - 邦网理论中的黑洞。我们已经看到,直到衍生物扩展的一阶,高斯 - 骨网术语不会按预期为流体熵添加任何额外的校正。但是,在派生膨胀的二阶情况下,边界电流将在非试图取决于我们如何选择地平线到边界图,而边界图不必完全以流体变量来表达。因此,一般而言,通过对二元电流对偶联而产生的边界熵电流将不接受流体动力学描述。
Working within the approximation of small amplitude expansion, recently an entropy current has been constructed on the horizons of dynamical black hole solution in any higher derivative theory of gravity. In this note, we have dualized this horizon entropy current to a boundary entropy current in an asymptotically AdS black hole metric with a dual description in terms of dynamical fluids living on the AdS boundary. This boundary entropy current is constructed using a set of mapping functions relating each point on the horizon to a point on the boundary. We have applied our construction to black holes in Einstein-Gauss-Bonnet theory. We have seen that up to the first order in derivative expansion, Gauss-Bonnet terms do not add any extra corrections to fluid entropy as expected. However, at the second order in derivative expansion, the boundary current will non-trivially depend on how we choose our horizon to boundary map, which need not be expressible entirely in terms of fluid variables. So generically, the boundary entropy current generated by dualizing the horizon current will not admit a fluid dynamical description.