论文标题
转子动力学中的二次特征问题问题的三种新的arnoldi-type方法
Three New Arnoldi-Type Methods for the Quadratic Eigenvalue Problem in Rotor Dynamics
论文作者
论文摘要
提出了三种新的Arnoldi-Type方法,以加速阻尼转子动力学有限元(FE)模型的模态分析和临界速度分析。它们是线性化的二次特征值问题(QEP)Arnoldi方法,QEP Arnoldi方法和截断的广义标准特征值问题(SEP)Arnoldi方法。而且,它们对应于三个还原子空间,包括线性化的QEP Krylov子空间,QEP Krylov子空间和截断的广义SEP Krylov子空间,在现有的Arnoldi-i-Type方法中也使用了第一个子空间。由Turbofan发动机低压(LP)转子构建的数值示例表明,我们提出的三种Arnoldi-Type方法比现有的Arnoldi-type方法更准确。
Three new Arnoldi-type methods are presented to accelerate the modal analysis and critical speed analysis of the damped rotor dynamics finite element (FE) model. They are the linearized quadratic eigenvalue problem (QEP) Arnoldi method, the QEP Arnoldi method, and the truncated generalized standard eigenvalue problem (SEP) Arnoldi method. And, they correspond to three reduction subspaces, including the linearized QEP Krylov subspace, the QEP Krylov subspace, and the truncated generalized SEP Krylov subspace, where the first subspace is also used in the existing Arnoldi-type methods. The numerical examples constructed by a turbofan engine low-pressure (LP) rotor demonstrate that our proposed three Arnoldi-type methods are more accurate than the existing Arnoldi-type methods.