论文标题
通过纳米结构传输的路径积分的转移矩阵求和
Transfer-matrix summation of path integrals for transport through nanostructures
论文作者
论文摘要
根据迭代求和路径积分的方法(ISPI)的方法,我们开发了一种数值精确的转移 - 马trix方法来描述相互作用的量子点系统的非平衡属性。为此,我们将ISPI方案映射到转移 - 马trix方法,该方法更容易被物理解释访问,可以更透明地表达理论,并大大提高了效率。特别是,固定限制是直接实施的,而无需外推。然后将所得的新方法(称为“路径积分的转移矩阵求和)(TRASPI),然后通过单级量子点应用于谐振电子传输。
On the basis of the method of iterative summation of path integrals (ISPI), we develop a numerically exact transfer-matrix method to describe the nonequilibrium properties of interacting quantum-dot systems. For this, we map the ISPI scheme to a transfer-matrix approach, which is more accessible to physical interpretation, allows for a more transparent formulation of the theory, and substantially improves the efficiency. In particular, the stationary limit is directly implemented, without the need of extrapolation. The resulting new method, referred to as "transfer-matrix summation of path integrals" (TraSPI), is then applied to resonant electronic transport through a single-level quantum dot.