论文标题

时空极端美国野火的回归模型通过部分隔离的神经网络

Regression modelling of spatiotemporal extreme U.S. wildfires via partially-interpretable neural networks

论文作者

Richards, Jordan, Huser, Raphaël

论文摘要

在许多环境环境中的风险管理需要了解驱动极端事件的机制。量化这种风险的有用指标是响应变量的极端分位数,这些变量是基于描述气候,生物圈和环境状态的预测变量。通常,这些分位数位于可观察数据的范围之内,因此,为了估算,需要在回归框架内规范参数极值模型。在这种情况下,经典方法利用预测变量和响应变量之间的线性或加性关系,并在其预测能力或计算效率中受苦;此外,它们的简单性不太可能捕获导致极端野火创造的真正复杂结构。在本文中,我们提出了一个新的方法学框架,用于使用人工中性网络执行极端分位回归,该网络能够捕获复杂的非线性关系并很好地扩展到高维数据。神经网络的“黑匣子”性质意味着它们缺乏从业者通常会喜欢的可解释性的理想特征。因此,我们将线性和添加剂回归方法与深度学习统一,以创建部分可解剖的神经网络,这些神经网络可用于统计推断,但保留了高预测准确性。为了补充这种方法,我们进一步提出了一个新颖的点过程模型,以克服与广义的极值分布类别相关的有限的下端问题。我们的统一框架的功效在带有高维预测器集的美国野火数据上说明了,我们说明了基于线性和基于样条的回归技术的预测性能的巨大改善。

Risk management in many environmental settings requires an understanding of the mechanisms that drive extreme events. Useful metrics for quantifying such risk are extreme quantiles of response variables conditioned on predictor variables that describe, e.g., climate, biosphere and environmental states. Typically these quantiles lie outside the range of observable data and so, for estimation, require specification of parametric extreme value models within a regression framework. Classical approaches in this context utilise linear or additive relationships between predictor and response variables and suffer in either their predictive capabilities or computational efficiency; moreover, their simplicity is unlikely to capture the truly complex structures that lead to the creation of extreme wildfires. In this paper, we propose a new methodological framework for performing extreme quantile regression using artificial neutral networks, which are able to capture complex non-linear relationships and scale well to high-dimensional data. The "black box" nature of neural networks means that they lack the desirable trait of interpretability often favoured by practitioners; thus, we unify linear, and additive, regression methodology with deep learning to create partially-interpretable neural networks that can be used for statistical inference but retain high prediction accuracy. To complement this methodology, we further propose a novel point process model for extreme values which overcomes the finite lower-endpoint problem associated with the generalised extreme value class of distributions. Efficacy of our unified framework is illustrated on U.S. wildfire data with a high-dimensional predictor set and we illustrate vast improvements in predictive performance over linear and spline-based regression techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源