论文标题
与分散管理非线性schrödinger方程相关的连续限制
Continuum limit related to dispersion managed nonlinear Schrödinger equations
论文作者
论文摘要
我们考虑具有幂律非线性的分散式非线性schrödinger方程及其离散版本的$ h \ in(0,1] $。我们证明,离散方程的解决方案在$ l^2中强烈收敛于$ l^2(\ mathbb {r})$ the nls $ nls $ nls $ nls的解决方案,以$ 0的范围\ nls nls $ hh \ hh h \ h h h h h y \ h h h y \ h h h h y \ h h h y h h y \ h y h h h y \ h y h h nls y \ h h h h y h h y h h y h h y h h y。方程式。
We consider the dispersion managed nonlinear Schrödinger equation with power-law nonlinearity and its discrete version of equations with step size $h\in(0,1]$. We prove that the solutions of the discrete equations strongly converge in $L^2(\mathbb{R})$ to the solution of the dispersion managed NLS as $h\to 0$ after showing the global well-posedness of the discrete equations.