论文标题
SGM-NET:语义指导垫网
SGM-Net: Semantic Guided Matting Net
论文作者
论文摘要
人类垫子是指从具有高质量的自然图像中提取人类部位,包括人类细节信息,例如头发,眼镜,帽子等。这项技术在电影行业的图像综合和视觉效果中起着至关重要的作用。当绿屏不可用时,现有的人类底漆方法需要其他输入(例如Trimap,背景图像等)或具有较高计算成本和复杂网络结构的模型,这给实践中的人类垫子应用带来了很大的困难。为了减轻此类问题,大多数现有方法(例如MODNET)使用多分支为通过细分铺平道路,但是这些方法并未充分利用图像功能,并且仅利用网络的预测结果作为指导信息。因此,我们提出了一个模块来生成前景概率图,并将其添加到MODNET中以获得语义引导的Matting Net(SGM-NET)。在只有一个图像的条件下,我们可以实现人类的效果任务。我们在P3M-10K数据集上验证我们的方法。与基准相比,在各种评估指标中,我们的方法显着改善。
Human matting refers to extracting human parts from natural images with high quality, including human detail information such as hair, glasses, hat, etc. This technology plays an essential role in image synthesis and visual effects in the film industry. When the green screen is not available, the existing human matting methods need the help of additional inputs (such as trimap, background image, etc.), or the model with high computational cost and complex network structure, which brings great difficulties to the application of human matting in practice. To alleviate such problems, most existing methods (such as MODNet) use multi-branches to pave the way for matting through segmentation, but these methods do not make full use of the image features and only utilize the prediction results of the network as guidance information. Therefore, we propose a module to generate foreground probability map and add it to MODNet to obtain Semantic Guided Matting Net (SGM-Net). Under the condition of only one image, we can realize the human matting task. We verify our method on the P3M-10k dataset. Compared with the benchmark, our method has significantly improved in various evaluation indicators.