论文标题
广义债券编号:$ k $ - 同步债券的图
Generalized Bondage Number: The $k$-synchronous bondage number of a graph
论文作者
论文摘要
我们研究了称为\ textIt {$ k \,$ - 同步债券编号}的图形的束缚号的概括。 $ k \,$ - 图的同步债券数量是最小的边数,当删除时,将主导数量增加到$ k $。在本文中,我们讨论了2个同步束缚编号,然后将其推广到$ k \,$ - 同步债券编号。我们提出$ k \,$ - 几个图类类的同步债券编号,并为常规图提供界限。我们将此特征作为简单图的连接性的指标,并在网络设计和优化领域中可能使用。
We investigate a generalization of the bondage number of a graph called the \textit{$k\,$-synchronous bondage number}. The $k\,$-synchronous bondage number of a graph is the smallest number of edges that, when removed, increases the dominating number by $k$. In this paper, we discuss the 2-synchronous bondage number and then generalize to $k\,$-synchronous bondage number. We present $k\,$-synchronous bondage number for several graph classes and give bounds for general graphs. We propose this characteristic as a metric of the connectivity of a simple graph with possible uses in the field of network design and optimization.