论文标题

BOW3D:实时循环的单词袋在3D激光雷达大满贯中关闭

BoW3D: Bag of Words for Real-Time Loop Closing in 3D LiDAR SLAM

论文作者

Cui, Yunge, Chen, Xieyuanli, Zhang, Yinlong, Dong, Jiahua, Wu, Qingxiao, Zhu, Feng

论文摘要

循环结束是自动移动系统同时本地化和映射(SLAM)的基本组成部分。在视觉大满贯领域,单词袋(弓)在循环封闭方面取得了巨大的成功。循环搜索的BOW功能也可以用于随后的6-DOF循环校正。但是,对于3D激光雷达的猛击,最新方法可能无法实时识别循环,并且通常无法纠正完整的6型循环姿势。为了解决这一限制,我们为实时循环的新颖单词提供了一个新颖的单词,以3D激光雷达大满贯闭合,称为Bow3D。我们的方法不仅有效地识别了重新审视的循环位置,而且还可以实时纠正完整的6-DOF循环姿势。 BOW3D根据3D LIDAR特征链接构建单词袋,该链接链接3D,该功能有效,姿势不变,可用于准确的点对点匹配。我们此外,将我们提出的方法嵌入了3D激光射击系统中,以评估循环闭合性能。我们在公共数据集上测试我们的方法,并将其与其他最先进的算法进行比较。在大多数情况下,BOW3D在F1最大方面表现出更好的性能和扩展的精度分数。值得注意的是,BOW3D平均需要48毫秒才能识别和纠正Kitti 00上的循环(包括4K+ 64射线激光扫描),当时在使用Intel Core i7 @2.2 GHz处理器的笔记本上执行时。我们在此处发布我们的方法的实现:https://github.com/yungecui/bow3d。

Loop closing is a fundamental part of simultaneous localization and mapping (SLAM) for autonomous mobile systems. In the field of visual SLAM, bag of words (BoW) has achieved great success in loop closure. The BoW features for loop searching can also be used in the subsequent 6-DoF loop correction. However, for 3D LiDAR SLAM, the state-of-the-art methods may fail to effectively recognize the loop in real time, and usually cannot correct the full 6-DoF loop pose. To address this limitation, we present a novel Bag of Words for real-time loop closing in 3D LiDAR SLAM, called BoW3D. Our method not only efficiently recognizes the revisited loop places, but also corrects the full 6-DoF loop pose in real time. BoW3D builds the bag of words based on the 3D LiDAR feature LinK3D, which is efficient, pose-invariant and can be used for accurate point-to-point matching. We furthermore embed our proposed method into 3D LiDAR odometry system to evaluate loop closing performance. We test our method on public dataset, and compare it against other state-of-the-art algorithms. BoW3D shows better performance in terms of F1 max and extended precision scores on most scenarios. It is noticeable that BoW3D takes an average of 48 ms to recognize and correct the loops on KITTI 00 (includes 4K+ 64-ray LiDAR scans), when executed on a notebook with an Intel Core i7 @2.2 GHz processor. We release the implementation of our method here: https://github.com/YungeCui/BoW3D.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源