论文标题

基于量子/光子系统的量子随机主方程的教程简介

A tutorial introduction to quantum stochastic master equations based on the qubit/photon system

论文作者

Rouchon, Pierre

论文摘要

从由两级系统(QUBIT)制成的关键复合量子系统和具有谐振或分散相互作用的谐波振荡器(光子),当测量量子或光子或光子时,一个人衍生出相应的量子随机主方程(SME)。从基于基于相互作用传播器的显式公式的基本离散时间公式开始,人们表明了如何包括测量缺陷和逆转。该量子/光子量子系统说明了一般离散时间中小型企业的KRAUS-MAP结构,该结构管理开放量子系统的动力学,但受环境引起的测量背部操作和逆转性。然后,在量子/光子系统上,一个人解释了连续数学模型的通道,其中测量信号是连续的真实值信号(通常是同型或异差信号),或者是从计数器获得的不连续和整数信号。在此推导过程中,kraus图公式以无限的方式保存。这样的推导还提供了与连续的SME相同的KRAUS-MAP公式,通常表示为由Wiener或Poisson过程驱动的随机微分方程。从这样的kraus-map公式中,得出了简单的线性数值积分方案,以保留密度算子的阳性和痕迹,即量子状态。

From the key composite quantum system made of a two-level system (qubit) and a harmonic oscillator (photon) with resonant or dispersive interactions, one derives the corresponding quantum Stochastic Master Equations (SME) when either the qubits or the photons are measured. Starting with an elementary discrete-time formulation based on explicit formulae for the interaction propagators, one shows how to include measurement imperfections and decoherence. This qubit/photon quantum system illustrates the Kraus-map structure of general discrete-time SME governing the dynamics of an open quantum system subject to measurement back-action and decoherence induced by the environment. Then, on the qubit/photon system, one explains the passage to a continuous-time mathematical model where the measurement signal is either a continuous real-value signal (typically homodyne or heterodyne signal) or a discontinuous and integer-value signal obtained from a counter. During this derivation, the Kraus map formulation is preserved in an infinitesimal way. Such a derivation provides also an equivalent Kraus-map formulation to the continuous-time SME usually expressed as stochastic differential equations driven either by Wiener or Poisson processes. From such Kraus-map formulation, simple linear numerical integration schemes are derived that preserve the positivity and the trace of the density operator, i.e. of the quantum state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源