论文标题

量子多参数估计的差距定理

The gap persistence theorem for quantum multiparameter estimation

论文作者

Conlon, Lorcán O., Suzuki, Jun, Lam, Ping Koy, Assad, Syed M.

论文摘要

仅通过对多个参数的同时估计,量子计量学的一个关键方面,测量不兼容。如果用于估计每个单独的参数通勤的最佳测量值,则对称对数衍生物Cramér-Rao结合(SLDCRB)可达到可达到的精度。当最佳测量不通勤时,不一定可以实现SLDCRB。在这方面,HolevoCramér-Rao结合(HCRB)起着基本作用,当人们允许同时对量子状态的许多副本进行同时测量时,提供了最终可达到的精确度。出于实际目的,NagaokaCramér-Rao Bound(NCRB)更相关,在限制单独测量量子状态时适用。这三个界限之间的相互作用决定了如何通过对探针状态的有限拷贝进行集体测量来实现最终的计量精确度的速度。我们首先考虑两个参数估计,并证明如果HCRB不能用探针状态的单个副本饱和,则对于任何有限数量的探针状态副本,它都无法饱和。因此,我们表明,对于几个出于身体动机的问题,不可能使HCRB饱和。为了估计任何数量的参数,我们为SLDCRB的可达到可分开的测量提供了必要的条件。我们进一步证明,如果无法使用探头状态的单个副本来达到SLDCRB,则无法通过对探针状态的任何有限数量的副本进行集体测量来实现。这些结果共同为SLDCRB的可在探针状态的任何有限副本提供了必要的条件。这解决了最近[P.Horodecki等人,Phys。 Rev. X Quantum 3,010101(2022)]。

One key aspect of quantum metrology, measurement incompatibility, is evident only through the simultaneous estimation of multiple parameters. The symmetric logarithmic derivative Cramér-Rao bound (SLDCRB), gives the attainable precision, if the optimal measurements for estimating each individual parameter commute. When the optimal measurements do not commute, the SLDCRB is not necessarily attainable. In this regard, the Holevo Cramér-Rao bound (HCRB) plays a fundamental role, providing the ultimate attainable precisions when one allows simultaneous measurements on infinitely many copies of a quantum state. For practical purposes, the Nagaoka Cramér-Rao bound (NCRB) is more relevant, applying when restricted to measuring quantum states individually. The interplay between these three bounds dictates how rapidly the ultimate metrological precisions can be approached through collective measurements on finite copies of the probe state. We first consider two parameter estimation and prove that if the HCRB cannot be saturated with a single copy of the probe state, then it cannot be saturated for any finite number of copies of the probe state. With this, we show that it is impossible to saturate the HCRB for several physically motivated problems. For estimating any number of parameters, we provide necessary and sufficient conditions for the attainability of the SLDCRB with separable measurements. We further prove that if the SLDCRB cannot be reached with a single copy of the probe state, it cannot be reached with collective measurements on any finite number of copies of the probe state. These results together provide necessary and sufficient conditions for the attainability of the SLDCRB for any finite number of copies of the probe state. This solves a significant generalisation of one of the five problems recently highlighted by [P.Horodecki et al, Phys. Rev. X Quantum 3, 010101 (2022)].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源