论文标题
在$ l^1 $和$ l^2 $之间的Orlicz空间中的子空间的结构
The structure of subspaces in Orlicz spaces between $L^1$ and $L^2$
论文作者
论文摘要
如果在$ h $中,$ x $ norm的收敛等同于汇聚,则在$ x $上强烈嵌入$ [0,1] $的重新布置不变空间$ x $的子空间$ h $。我们在Orlicz功能$ M $上获得了必要的条件,根据该函数,在Orlicz Space中,任意强嵌入的子空间的单位球$ L_M $具有$ l_m $的均值均匀连续规范。
A subspace $H$ of a rearrangement invariant space $X$ on $[0,1]$ is strongly embedded in $X$ if, in $H$, convergence in $X$-norm is equivalent to convergence in measure. We obtain necessary and sufficient conditions on an Orlicz function $M$, under which the unit ball of an arbitrary strongly embedded subspace in the Orlicz space $L_M$ has equi-absolutely continuous norms in $L_M$.