论文标题
$ s^3/q_8 $的拓扑复杂性为fibrewise L-S类别
Topological Complexity of $S^3/Q_8$ as fibrewise L-S category
论文作者
论文摘要
在2010年,M。Sakai和第一作者表明,空间$ x $的拓扑复杂性与尖头的fibrewise space $ \ operatorname {pr} _ {1} _ {1}:x \ times x \ to x $的fibrewise fibrewise非点L-s类别与二分法$δ:x $δ:x \ x \ x $ x $ x $ x $ x $ x $ x $ x $。在本文中,我们描述了我们的算法如何确定拓扑球形空间形式的Fibrewise L-S类别或拓扑复杂性。特别是,对于$ s^3/q_8 $,其中$ q_8 $是Quaternion组,我们编写了一个Python代码来实现算法以确定其拓扑复杂性。
In 2010, M. Sakai and the first author showed that the topological complexity of a space $X$ coincides with the fibrewise unpointed L-S category of a pointed fibrewise space $\operatorname{pr}_{1} : X \times X \to X$ with the diagonal map $Δ: X \to X \times X$ as its section. In this paper, we describe our algorithm how to determine the fibrewise L-S category or the Topological Complexity of a topological spherical space form. Especially, for $S^3/Q_8$ where $Q_8$ is the quaternion group, we write a python code to realise the algorithm to determine its Topological Complexity.