论文标题
用于恶意软件检测的自我监督视觉变压器
Self-Supervised Vision Transformers for Malware Detection
论文作者
论文摘要
恶意软件检测在网络安全中起着至关重要的作用,随着恶意软件增长的增加和网络攻击的进步。以前看不见的恶意软件不是由安全供应商确定的,这些恶意软件通常在这些攻击中使用,并且不可避免地要找到可以从未标记的样本数据中自学习的解决方案。本文介绍了Sherlock,这是一种基于自学的深度学习模型,可根据视觉变压器(VIT)体系结构检测恶意软件。 Sherlock是一种新颖的恶意软件检测方法,它可以通过使用基于图像的二进制表示形式来学习独特的功能,以区分恶意软件和良性程序。在47种类型和696个家庭的层次结构中使用120万个Android应用的实验结果表明,自我监督的学习可以实现97%的恶意软件分类,而恶意软件的二进制分类比现有的最新技术更高。我们提出的模型还能够胜过针对多级恶意软件类型和家庭的最先进技术,其宏F1分别为.497和.491。
Malware detection plays a crucial role in cyber-security with the increase in malware growth and advancements in cyber-attacks. Previously unseen malware which is not determined by security vendors are often used in these attacks and it is becoming inevitable to find a solution that can self-learn from unlabeled sample data. This paper presents SHERLOCK, a self-supervision based deep learning model to detect malware based on the Vision Transformer (ViT) architecture. SHERLOCK is a novel malware detection method which learns unique features to differentiate malware from benign programs with the use of image-based binary representation. Experimental results using 1.2 million Android applications across a hierarchy of 47 types and 696 families, shows that self-supervised learning can achieve an accuracy of 97% for the binary classification of malware which is higher than existing state-of-the-art techniques. Our proposed model is also able to outperform state-of-the-art techniques for multi-class malware classification of types and family with macro-F1 score of .497 and .491 respectively.