论文标题

谐和的活性颗粒的非平衡稳态

Nonequilibirum steady state for harmonically-confined active particles

论文作者

Smith, Naftali R., Farago, Oded

论文摘要

我们研究了完整的非平衡稳态分布$ p _ {\ text {st}} \ left(x \ right)$的位置的$ x $的$ x $限制在谐波捕获潜力和有效噪声的阻尼粒子,其相关时间$τ_c$被认为很短。 $ x $的典型波动受玻尔兹曼分布的有效温度的约束,通过将噪声近似为白色高斯热噪声而发现。但是,非Boltzmann稳态分布描述了$ x $的大偏差。我们发现,在限制$ $τ_c\ to 0 $中,它们显示了缩放行为$ p _ {\ text {st}}} \ left(x \ right)\ sim e^{ - s e^{ - s \ s \ left(x \ right)/τ_{c}}} $,其中$ s \ s \ s \ left(x \ weft)我们为一般的活动噪声获得了$ s \ left(x \右)$的表达式,并针对特定的电视(二分法)噪声进行计算。

We study the full nonequilibirum steady state distribution $P_{\text{st}}\left(X\right)$ of the position $X$ of a damped particle confined in a harmonic trapping potential and experiencing active noise, whose correlation time $τ_c$ is assumed to be very short. Typical fluctuations of $X$ are governed by a Boltzmann distribution with an effective temperature that is found by approximating the noise as white Gaussian thermal noise. However, large deviations of $X$ are described by a non-Boltzmann steady-state distribution. We find that, in the limit $τ_c \to 0$, they display the scaling behavior $P_{\text{st}}\left(X\right)\sim e^{-s\left(X\right)/τ_{c}}$, where $s\left(X\right)$ is the large-deviation function. We obtain an expression for $s\left(X\right)$ for a general active noise, and calculate it exactly for the particular case of telegraphic (dichotomous) noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源