论文标题

快速学习辐射场通过拍摄较少的射线来

Fast Learning Radiance Fields by Shooting Much Fewer Rays

论文作者

Zhang, Wenyuan, Xing, Ruofan, Zeng, Yunfan, Liu, Yu-Shen, Shi, Kanle, Han, Zhizhong

论文摘要

学习辐射场为新型视图综合显示出了显着的结果。学习过程通常会花费大量时间,这激发了最新方法,通过没有神经网络或使用更有效的数据结构来加快学习过程。但是,这些专门设计的方法不适用于大多数基于辐射的方法的方法。为了解决这个问题,我们引入了一项一般策略,以加快基于辐射的方法的学习过程。我们的关键想法是通过在多视图卷渲染过程中拍摄较少的射线来减少冗余,这是几乎所有基于辐射的方法的基础。我们发现,在具有巨大色彩变化的像素上的射击不仅会显着减轻训练负担,而且几乎不会影响学习到的辐射场的准确性。此外,我们还根据树中每个节点的平均渲染误差将每个视图自适应地细分为Quadtree,这使我们在更复杂的区域中动态射击更多的射线,并具有较大的渲染误差。我们在广泛使用的基准下使用不同的基于辐射的方法评估我们的方法。实验结果表明,我们的方法具有与最先进的训练相当的精度。

Learning radiance fields has shown remarkable results for novel view synthesis. The learning procedure usually costs lots of time, which motivates the latest methods to speed up the learning procedure by learning without neural networks or using more efficient data structures. However, these specially designed approaches do not work for most of radiance fields based methods. To resolve this issue, we introduce a general strategy to speed up the learning procedure for almost all radiance fields based methods. Our key idea is to reduce the redundancy by shooting much fewer rays in the multi-view volume rendering procedure which is the base for almost all radiance fields based methods. We find that shooting rays at pixels with dramatic color change not only significantly reduces the training burden but also barely affects the accuracy of the learned radiance fields. In addition, we also adaptively subdivide each view into a quadtree according to the average rendering error in each node in the tree, which makes us dynamically shoot more rays in more complex regions with larger rendering error. We evaluate our method with different radiance fields based methods under the widely used benchmarks. Experimental results show that our method achieves comparable accuracy to the state-of-the-art with much faster training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源