论文标题
DISENHCN:空间颞活动预测的删除超透明卷积网络
DisenHCN: Disentangled Hypergraph Convolutional Networks for Spatiotemporal Activity Prediction
论文作者
论文摘要
时空活动预测,旨在预测特定位置和时间的用户活动,对于城市规划和移动广告等应用至关重要。基于张量分解或嵌入图的现有解决方案受到以下两个主要局限性的影响:1)忽略用户偏好的细粒度相似之处; 2)用户的建模已纠缠。在这项工作中,我们提出了一个称为Disenhcn的超图神经网络模型,以弥合上述差距。特别是,我们首先将细粒用户相似性和用户偏好和时空活动之间的复杂匹配统一为异质性超图。然后,我们将用户表示形式分为不同的方面(位置感知,时光和活动感知),并汇总了相应的方面在构造的超图上的特征,从不同方面捕获了高阶关系,并解散了各个方面的最终预测的影响。广泛的实验表明,我们的DisenHCN在四个现实世界中的数据集上的表现优于最先进的方法的14.23%至18.10%。进一步的研究还令人信服地验证了我们disenhcn中每个组成部分的合理性。
Spatiotemporal activity prediction, aiming to predict user activities at a specific location and time, is crucial for applications like urban planning and mobile advertising. Existing solutions based on tensor decomposition or graph embedding suffer from the following two major limitations: 1) ignoring the fine-grained similarities of user preferences; 2) user's modeling is entangled. In this work, we propose a hypergraph neural network model called DisenHCN to bridge the above gaps. In particular, we first unify the fine-grained user similarity and the complex matching between user preferences and spatiotemporal activity into a heterogeneous hypergraph. We then disentangle the user representations into different aspects (location-aware, time-aware, and activity-aware) and aggregate corresponding aspect's features on the constructed hypergraph, capturing high-order relations from different aspects and disentangles the impact of each aspect for final prediction. Extensive experiments show that our DisenHCN outperforms the state-of-the-art methods by 14.23% to 18.10% on four real-world datasets. Further studies also convincingly verify the rationality of each component in our DisenHCN.