论文标题
全球亚瑟参数中的theta对应关系和简单因素
Theta correspondence and simple factors in global Arthur parameters
论文作者
论文摘要
By using results on poles of $L$-functions and theta correspondence, we give a bound on $b$ for $(χ,b)$-factors of the global Arthur parameter of a cuspidal automorphic representation $π$ of a classical group or a metaplectic group where $χ$ is a conjugate self-dual automorphic character and $b$ is an integer which is the dimension of an irreducible $ \ mathrm {sl} _ {2}(\ Mathbf {cc})$的表示形式。当$π$位于通用全球$ a $ a-aket中时,我们会得出更精确的关系。
By using results on poles of $L$-functions and theta correspondence, we give a bound on $b$ for $(χ,b)$-factors of the global Arthur parameter of a cuspidal automorphic representation $π$ of a classical group or a metaplectic group where $χ$ is a conjugate self-dual automorphic character and $b$ is an integer which is the dimension of an irreducible representation of $\mathrm{SL}_{2}(\mathbf{CC})$. We derive a more precise relation when $π$ lies in a generic global $A$-packet.