论文标题
snguess:一种选择年轻的外乳外瞬变的方法
SNGuess: A method for the selection of young extragalactic transients
论文作者
论文摘要
随着天文学中检测到的瞬变数量的迅速增加,基于机器学习的分类方法正在越来越多地使用。他们的目标通常是要获得瞬态的确定分类,并且出于良好的性能,他们通常需要大量观察。但是,精心设计,有针对性的模型可以通过更少的计算资源来达到其分类目标。本文介绍了Snguess,该模型旨在找到高纯度附近的年轻外乳旋转瞬变。 Snguess可以使用一组功能,这些功能可以从天文学警报数据中有效地计算出来。其中一些功能是静态的,并且与警报元数据相关联,而其他功能必须根据警报中包含的光度观测值计算。大多数功能都足够简单,可以在其检测后的瞬态生命周期中的早期阶段获得或计算。我们为从Zwicky Transient设施(ZTF)的15个月内获得的一组标记的公共警报数据计算这些功能。 Snguess的核心模型由一组决策树组成,这些决策树是通过梯度提升而训练的。 SNGUESS建议的候选人中约有88%的ZTF从2020年4月至2021年8月的一组警报中,被发现是真正的相关超新星(SNE)。对于具有明亮检测的警报,此数字在92%至98%之间。自2020年4月以来,Snguess确定为ZTF Alert流中潜在SNE的瞬变已发布到AMPEL_ZTF_NEW组标识符下的瞬态名称服务器(TNS)。可以通过Web服务访问ZTF观察到的任何暂时性的SNGUESS分数。 Snguess的源代码可公开使用。
With a rapidly rising number of transients detected in astronomy, classification methods based on machine learning are increasingly being employed. Their goals are typically to obtain a definitive classification of transients, and for good performance they usually require the presence of a large set of observations. However, well-designed, targeted models can reach their classification goals with fewer computing resources. This paper presents SNGuess, a model designed to find young extragalactic nearby transients with high purity. SNGuess works with a set of features that can be efficiently calculated from astronomical alert data. Some of these features are static and associated with the alert metadata, while others must be calculated from the photometric observations contained in the alert. Most of the features are simple enough to be obtained or to be calculated already at the early stages in the lifetime of a transient after its detection. We calculate these features for a set of labeled public alert data obtained over a time span of 15 months from the Zwicky Transient Facility (ZTF). The core model of SNGuess consists of an ensemble of decision trees, which are trained via gradient boosting. Approximately 88% of the candidates suggested by SNGuess from a set of alerts from ZTF spanning from April 2020 to August 2021 were found to be true relevant supernovae (SNe). For alerts with bright detections, this number ranges between 92% and 98%. Since April 2020, transients identified by SNGuess as potential young SNe in the ZTF alert stream are being published to the Transient Name Server (TNS) under the AMPEL_ZTF_NEW group identifier. SNGuess scores for any transient observed by ZTF can be accessed via a web service. The source code of SNGuess is publicly available.