论文标题
时空机械模型的动态贝叶斯学习
Dynamic Bayesian Learning for Spatiotemporal Mechanistic Models
论文作者
论文摘要
我们开发了一种贝叶斯学习时空动力学模型的方法。这样的学习包括对机械系统的统计模拟,该模拟可以有效地从任意输入中插入系统的输出。然后,模拟的学习者可以通过将观察到的数据与模拟机械系统从观察到的数据融合到获得的噪声数据中来训练系统。机械系统的这种联合融合采用高斯过程回归的层次状态空间模型。假设动态系统受到有限的输入集合控制,高斯过程回归通过许多训练运行来了解这些参数的效果,从而驱动了时空状态空间组件的随机创新。这可以在空间和时间上有效地建模动力学。本文在设计模拟器时详细介绍了层次矩阵变差正常和WishArt模型中具有分析可访问的后验分布的精确推断。此步骤避免了昂贵的迭代算法,例如马尔可夫链蒙特卡洛或变异近似。我们还通过设计动态的贝叶斯转移学习框架来展示仿真如何适用于大规模仿真。机械模型参数的推断使用Markov Chain Monte Carlo作为使用模拟器作为回归成分的释放步骤进行。我们通过解决普通和部分非线性微分方程的分析中出现的反问题来证明这一框架,此外,除了在图形模型上生成时空动力学的黑盒计算机模型外。
We develop an approach for Bayesian learning of spatiotemporal dynamical mechanistic models. Such learning consists of statistical emulation of the mechanistic system that can efficiently interpolate the output of the system from arbitrary inputs. The emulated learner can then be used to train the system from noisy data achieved by melding information from observed data with the emulated mechanistic system. This joint melding of mechanistic systems employ hierarchical state-space models with Gaussian process regression. Assuming the dynamical system is controlled by a finite collection of inputs, Gaussian process regression learns the effect of these parameters through a number of training runs, driving the stochastic innovations of the spatiotemporal state-space component. This enables efficient modeling of the dynamics over space and time. This article details exact inference with analytically accessible posterior distributions in hierarchical matrix-variate Normal and Wishart models in designing the emulator. This step obviates expensive iterative algorithms such as Markov chain Monte Carlo or variational approximations. We also show how emulation is applicable to large-scale emulation by designing a dynamic Bayesian transfer learning framework. Inference on mechanistic model parameters proceeds using Markov chain Monte Carlo as a post-emulation step using the emulator as a regression component. We demonstrate this framework through solving inverse problems arising in the analysis of ordinary and partial nonlinear differential equations and, in addition, to a black-box computer model generating spatiotemporal dynamics across a graphical model.