论文标题

通过受控放缓的公平Coflow调度

Fair Coflow Scheduling via Controlled Slowdown

论文作者

De Pellegrini, Francesco, Gupta, Vaibhav Kumar, Azouzi, Rachid El, Gueye, Serigne, Richier, Cedric, Leguay, Jeremie

论文摘要

平均COFLOW完成时间(CCT)是Coflow计划中的标准性能指标。但是,标准的CCT最小化可能会在不同计算作业的数据传输阶段之间引入不公平性。因此,尽管文献中已经引入了进度保证来减轻这一公平性问题,但数据传输的公平和效率之间的权衡很难控制。本文基于放缓的概念,即与隔离相比,基于放缓的概念,即Coflow调度的公平框架。通过控制放缓,可以实现目标Coflow的进展,同时最大程度地减少平均CCT。在提议的框架中,可以在多项式时间内确定一批Coflows的最小放缓。通过显示与高斯消除的等效性,将减速限制引入了适用于同伴算法的原始二次迭代中。该算法扩展了Sigma-rorder调度程序的类,以在多项式时间内解决公平的Coflow调度问题。它提供了平均CCT W.R.T.的4个附近。最佳调度程序。广泛的数值结果表明,这种方法可以比现有状态调度程序更有效地对平均CCT进行权衡。

The average coflow completion time (CCT) is the standard performance metric in coflow scheduling. However, standard CCT minimization may introduce unfairness between the data transfer phase of different computing jobs. Thus, while progress guarantees have been introduced in the literature to mitigate this fairness issue, the trade-off between fairness and efficiency of data transfer is hard to control. This paper introduces a fairness framework for coflow scheduling based on the concept of slowdown, i.e., the performance loss of a coflow compared to isolation. By controlling the slowdown it is possible to enforce a target coflow progress while minimizing the average CCT. In the proposed framework, the minimum slowdown for a batch of coflows can be determined in polynomial time. By showing the equivalence with Gaussian elimination, slowdown constraints are introduced into primal-dual iterations of the CoFair algorithm. The algorithm extends the class of the sigma-order schedulers to solve the fair coflow scheduling problem in polynomial time. It provides a 4-approximation of the average CCT w.r.t. an optimal scheduler. Extensive numerical results demonstrate that this approach can trade off average CCT for slowdown more efficiently than existing state of the art schedulers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源