论文标题
量子增强的传输感应
Quantum-Enhanced Transmittance Sensing
论文作者
论文摘要
我们考虑了估计沐浴在热背景光的目标的未知透射率$θ$的问题。随着量子估计理论产生的基本限制,我们采用了有损的热噪声骨通道模型,该模型在许多实用的活性刷流系统中机械地描述了传感器 - 靶标相互作用量子(例如,在光学,微波或无线电频率上使用排放量)。我们证明,使用两种模式挤压真空(TMSV)渐近地实现量子照明可以在所有量子状态(不一定是高斯)上以低传播能力的极限上的所有量子状态(不一定是高斯)上实现最小的量子cramér-rao结合(CRB)。我们表征了TMSV输入的最佳接收器结构,并使用分析和Monte Carlo模拟表现出比其他接收器的优势。
We consider the problem of estimating unknown transmittance $θ$ of a target bathed in thermal background light. As quantum estimation theory yields the fundamental limits, we employ the lossy thermal-noise bosonic channel model, which describes sensor-target interaction quantum mechanically in many practical active-illumination systems (e.g., using emissions at optical, microwave, or radio frequencies). We prove that quantum illumination using two-mode squeezed vacuum (TMSV) states asymptotically achieves minimal quantum Cramér-Rao bound (CRB) over all quantum states (not necessarily Gaussian) in the limit of low transmitted power. We characterize the optimal receiver structure for TMSV input, and show its advantage over other receivers using both analysis and Monte Carlo simulation.