论文标题
具有广义核多项式算法的非铁旋转链中的拓扑自旋激发
Topological spin excitations in non-Hermitian spin chains with a generalized kernel polynomial algorithm
论文作者
论文摘要
非汉密尔顿人的光谱函数可以揭示存在拓扑非平凡的线间隙和相关的拓扑边缘模式的存在。然而,非热式多体系统中光谱函数的计算仍然是一个开放的挑战。在这里,我们提出了一种基于内核多项式方法和矩阵 - 产物状态形式主义的非武术多体汉顿式汉密尔顿的光谱函数的数值方法。我们表明,使用我们的算法计算的局部光谱函数揭示了在非热旋模模型中揭示拓扑自旋激发,忠实地反映了多体模型中的非平凡线差距。我们进一步表明,该算法在非铁皮皮肤效应的情况下起作用。我们的方法提供了一种有效的方法来计算具有张量 - 网络的非炎症多体系统中的局部光谱功能,从而可以表征非铁量量子多体模型中的线间隙拓扑。
Spectral functions of non-Hermitian Hamiltonians can reveal the existence of topologically non-trivial line gaps and the associated topological edge modes. However, the computation of spectral functions in a non-Hermitian many-body system remains an open challenge. Here, we put forward a numerical approach to compute spectral functions of a non-Hermitian many-body Hamiltonian based on the kernel polynomial method and the matrix-product state formalism. We show that the local spectral functions computed with our algorithm reveal topological spin excitations in a non-Hermitian spin model, faithfully reflecting the non-trivial line gap topology in a many-body model. We further show that the algorithm works in the presence of the non-Hermitian skin effect. Our method offers an efficient way to compute local spectral functions in non-Hermitian many-body systems with tensor-networks, allowing to characterize line gap topology in non-Hermitian quantum many-body models.