论文标题
扭曲空间和全态威尔逊线中的4D/2D对应关系
The 4d/2d correspondence in twistor space and holomorphic Wilson lines
论文作者
论文摘要
在规格理论的情况下,我们对4D本地操作员 / 2D共形块对应关系进行明确实现。这是通过使用威尔逊线的全态概括将4D本地运算符将4D本地操作员提升到扭曲空间中的非本地运算符。此过程自动构造了与本地操作员相对应的2D共形块。我们将这种举重解释为有效地整合了生活在缺陷上的自由度。我们介绍了缺陷代数的一些2D手性CFT表示,其相关因子会重现通过提升过程获得的共形块。
We give an explicit realization of the 4d local operator / 2d conformal block correspondence of Costello and Paquette in the case of gauge theories. This is accomplished by lifting the 4d local operators to non-local operators in twistor space using a holomorphic generalization of the Wilson line. This procedure automatically constructs the 2d conformal blocks corresponding to the local operator. We interpret this lifting as effectively integrating out the 2d degrees of freedom living on the defect. We present some 2d chiral CFT representations of the defect algebra whose correlators reproduce the conformal blocks obtained by the lifting procedure.