论文标题
双UNET:通过级联差异融合的新型暹罗网络用于变化检测
dual unet:a novel siamese network for change detection with cascade differential fusion
论文作者
论文摘要
遥感图像的变更检测(CD)是通过分析两个次时图像之间的差异来检测变化区域。它广泛用于土地资源规划,自然危害监测和其他领域。在我们的研究中,我们提出了一个新型的暹罗神经网络,用于变化检测任务,即双UNET。与以前的单独编码BITEMAL图像相反,我们设计了一个编码器差分 - 注意模块,以关注像素的空间差异关系。为了改善网络的概括,它计算出咬合图像之间任何像素之间的注意力权重,并使用它们来引起更多的区分特征。为了改善特征融合并避免梯度消失,在解码阶段提出了多尺度加权方差图融合策略。实验表明,所提出的方法始终优于流行的季节性变化检测数据集最先进的方法。
Change detection (CD) of remote sensing images is to detect the change region by analyzing the difference between two bitemporal images. It is extensively used in land resource planning, natural hazards monitoring and other fields. In our study, we propose a novel Siamese neural network for change detection task, namely Dual-UNet. In contrast to previous individually encoded the bitemporal images, we design an encoder differential-attention module to focus on the spatial difference relationships of pixels. In order to improve the generalization of networks, it computes the attention weights between any pixels between bitemporal images and uses them to engender more discriminating features. In order to improve the feature fusion and avoid gradient vanishing, multi-scale weighted variance map fusion strategy is proposed in the decoding stage. Experiments demonstrate that the proposed approach consistently outperforms the most advanced methods on popular seasonal change detection datasets.