论文标题
庞加莱复合物对角和低音痕量猜想
Poincaré Complex Diagonals and the Bass trace Conjecture
论文作者
论文摘要
对于有限统治的庞加莱二元空间$ m $,我们展示了作者对对角线地图$ m \ to m $ m $的庞加尔嵌入的总障碍与$ m $的身份痕迹的痕迹相关。 我们还表明,如果$ m $的尺寸均匀且至少四个,并且如果$π_1(m)$是订单二的循环群的有限直接产品,则对角线地图承认庞加莱的嵌入。
For a finitely dominated Poincaré duality space $M$, we show how the author's total obstruction to the existence of a Poincaré embedding of the diagonal map $M \to M \times M$ relates to the Reidemeister trace of the identity map of $M$. We also show that if the dimension of $M$ is even and at least four, and if $π_1(M)$ is a finite direct product of cyclic groups of order two, then the diagonal map admits a Poincaré embedding.