论文标题
来自MHD的prandtl模型的全球适应性在gevrey函数空间中
Global Well-posedness of a Prandtl Model from MHD in Gevrey Function Spaces
论文作者
论文摘要
我们考虑了prandtl-hartmann制度中MHD的PrandTL模型,该模型由于Hartmann边界层的效果而具有阻尼项。最佳指数$ 2 $在Gevrey功能空间中获得了全球及时的适合度。该证明是基于通过prandtl方程研究的一些辅助功能来基于取消机制的,以及关于通过Prandtl Operator两次操作的一个顺序切向导数的结构的观察
We consider a Prandtl model derived from MHD in the Prandtl-Hartmann regime that has a damping term due to the effect of the Hartmann boundary layer. A global-in-time well-posedness is obtained in the Gevrey function space with the optimal index $2$. The proof is based on a cancellation mechanism through some auxiliary functions from the study of the Prandtl equation and an observation about the structure of the loss of one order tangential derivatives through twice operations of the Prandtl operator