论文标题
从周期性旅行水波和使用签名的奇异值检测分叉的方法中,从空间上进行了准周期分叉
Spatially quasi-periodic bifurcations from periodic traveling water waves and a method for detecting bifurcations using signed singular values
论文作者
论文摘要
我们提出了一种通过定位雅各布式最小奇异值的签名版本来检测分叉的方法。这使得使用四四趋同的根括号技术或Chebyshev插值来定位分叉点。尽管该方法依赖于分析或平滑奇异值分解(SVD)的存在,但只能计算正值的奇异值。雅各比式的决定因素的迹象是作为SVD算法中比尼对的一部分计算的,它消除了最小奇异值的零点的斜率不连续性。我们使用该方法来搜索从大振幅周期性波动上分叉的空间周期性流动水波。水波方程在共形映射框架中配制,以促进准周期dirichlet-Neumann操作员的计算。我们发现表面张力为零的纯重力波和悬垂性重力波浪的示例。在这两种情况下,波浪都有两个空间准周期,其比率是不合理的。我们通过数值延续遵循二级分支,超出了对主要分支上解决方案的线性化领域,以获取行进的水波,这些水波延伸到真实线上,没有两个波峰或完全相同的形状的槽。纯重力波问题与海浪相关,在那里可以忽略毛细血管效应。这样的波只能通过次要分叉存在,因为它们不会持续到零幅度。重力毛细血管波问题证明了使用符号最小的奇异值作为多参数分叉问题的测试函数的有效性。一旦网格足够良好,该测试功能就会独立于网格。
We present a method of detecting bifurcations by locating zeros of a signed version of the smallest singular value of the Jacobian. This enables the use of quadratically convergent root-bracketing techniques or Chebyshev interpolation to locate bifurcation points. Only positive singular values have to be computed, though the method relies on the existence of an analytic or smooth singular value decomposition (SVD). The sign of the determinant of the Jacobian, computed as part of the bidiagonal reduction in the SVD algorithm, eliminates slope discontinuities at the zeros of the smallest singular value. We use the method to search for spatially quasi-periodic traveling water waves that bifurcate from large-amplitude periodic waves. The water wave equations are formulated in a conformal mapping framework to facilitate the computation of the quasi-periodic Dirichlet-Neumann operator. We find examples of pure gravity waves with zero surface tension and overhanging gravity-capillary waves. In both cases, the waves have two spatial quasi-periods whose ratio is irrational. We follow the secondary branches via numerical continuation beyond the realm of linearization about solutions on the primary branch to obtain traveling water waves that extend over the real line with no two crests or troughs of exactly the same shape. The pure gravity wave problem is of relevance to ocean waves, where capillary effects can be neglected. Such waves can only exist through secondary bifurcation as they do not persist to zero amplitude. The gravity-capillary wave problem demonstrates the effectiveness of using the signed smallest singular value as a test function for multi-parameter bifurcation problems. This test function becomes mesh independent once the mesh is fine enough.