论文标题
$ \ text {sl}(2,q)$的Stiefel-Whitney类的表示
Stiefel-Whitney Classes of Representations of $\text{SL}(2,q)$
论文作者
论文摘要
我们描述了有限的特殊线性组的正交表示的Stiefel-Whitney类(SWC)$ g = \ text {sl}(2,\ Mathbb f_q)$,在$π$的字符值方面。通过此计算,我们可以回答有关$π$的SWC的有趣问题。例如,我们确定$ h^*(g,\ mathbb z/2 \ mathbb z)$ of orthoconal $π$生成的子代理,我们还确定哪个$π$具有非平凡的mod mod $ 2 $ 2 $ euler类。
We describe the Stiefel-Whitney classes (SWCs) of orthogonal representations $π$ of the finite special linear groups $G=\text{SL}(2,\mathbb F_q)$, in terms of character values of $π$. From this calculation, we can answer interesting questions about SWCs of $π$. For instance, we determine the subalgebra of $H^*(G,\mathbb Z/2\mathbb Z)$ generated by the SWCs of orthogonal $π$, and we also determine which $π$ have nontrivial mod $2$ Euler class.