论文标题

渐近扩展,用于对流的薄图连接处

Asymptotic expansion for convection-dominated transport in a thin graph-like junction

论文作者

Mel'nyk, Taras, Rohde, Christian

论文摘要

我们考虑一个小参数$ \ varepsilon> 0 $抛物线对流扩散问题,péclet$ \ nathcal {o}(\ varepsilon^{ - 1})$在三维图形的连接中,由curvon $ \ mathirine $ \ mathir contiment $ \ mathercy {通过直径$ \ mathcal {o}(\ varepsilon)的域(节点)。$不均匀的neumann型边界条件,涉及对流和扩散通量,都在薄圆柱体的侧面和node的边界的侧面上处方。 将溶液的渐近行为研究为$ \ varepsilon \至0,$,即当消除扩散系数并在单个顶点中连接的三部分图中缩小了薄连接。开发了解决溶液的完整渐近扩展的严格程序,并证明了相应的能量和均匀的估计值。根据极限对流通量的方向,相应的极限问题$(\ varepsilon = 0)$以一维分支的一阶双曲分支方程的形式得出,该分支具有新的粘合条件。这些概括了经典的Kirchhoff传输条件,可能需要解决与顶点相关的三维细胞状问题的解决方案,以说明节点的局部几何不均匀性和节点中的物理过程。渐近ansatz由三个部分,即常规部分,节点层部分和边界层组成。它们的系数是针对混合限值问题的经典解决方案。分析了这些解决方案的存在和其他特性。

We consider for a small parameter $\varepsilon >0$ a parabolic convection-diffusion problem with Péclet number of order $\mathcal{O}(\varepsilon^{-1})$ in a three-dimensional graph-like junction consisting of thin curvilinear cylinders with radii of order $\mathcal{O}(\varepsilon)$ connected through a domain (node) of diameter $\mathcal{O}(\varepsilon).$ Inhomogeneous Neumann type boundary conditions, that involve convective and diffusive fluxes, are prescribed both on the lateral surfaces of the thin cylinders and the boundary of the node. The asymptotic behaviour of the solution is studied as $\varepsilon \to 0,$ i.e., when the diffusion coefficients are eliminated and the thin junction is shrunk into a three-part graph connected in a single vertex. A rigorous procedure for the construction of the complete asymptotic expansion of the solution is developed and the corresponding energetic and uniform pointwise estimates are proven. Depending on the directions of the limit convective fluxes, the corresponding limit problems $(\varepsilon = 0)$ are derived in the form of first-order hyperbolic differential equations on the one-dimensional branches with novel gluing conditions at the vertex. These generalize the classical Kirchhoff transmission conditions and might require the solution of a three-dimensional cell-like problem associated with the vertex to account for the local geometric inhomogeneity of the node and the physical processes in the node. The asymptotic ansatz consists of three parts, namely, the regular part, node-layer part, and boundary-layer one. Their coefficients are classical solutions to mixed-dimensional limit problems. The existence and other properties of those solutions are analyzed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源