论文标题
$ J_ {1} J_ {2} J_ {3} $ Quantum Heisenberg模型的自旋功能重归其化组
Spin functional renormalization group for the $J_{1}J_{2}J_{3}$ quantum Heisenberg model
论文作者
论文摘要
我们使用最近开发的功能性重归其化组(FRG)方法对量子自旋系统进行研究,以研究挫折的$ J_ {1} J_ {2} J_ {2} J_ {3} $ Quantum Heisenberg模型的相图。从简单的frg流动方程层次结构的简单截断,对于不可减至的旋转媒体,它仅保留静态旋转波动并忽略了四旋链相互作用的流动,我们可以以与数字上昂贵的pseudofermion frg相似的临界温度估计临界温度。在基态表现出铁磁或抗磁磁性秩序的机制中,更复杂的截断,包括四旋旋转相互作用的重新归一化以及动态自旋波动的重新旋转,揭示了基本的重新归化组固定点,并产生了与可接受值偏离最多4%%的关键温度。
We use our recently developed functional renormalization group (FRG) approach for quantum spin systems to investigate the phase diagram of the frustrated $J_{1}J_{2}J_{3}$ quantum Heisenberg model on a cubic lattice. From a simple truncation of the hierarchy of FRG flow equations for the irreducible spin-vertices which retains only static spin fluctuations and neglects the flow of the four-spin interaction, we can estimate the critical temperature with a similar accuracy as the numerically more expensive pseudofermion FRG. In the regime where the ground state exhibits either ferromagnetic or antiferromagnetic order, a more sophisticated truncation including the renormalization of the four-spin interaction as well as dynamic spin fluctuations reveals the underlying renormalization group fixed point and yields critical temperatures which deviate from the accepted values by at most 4 %.