论文标题

基于界限的神经网络验证的一般切割平面

General Cutting Planes for Bound-Propagation-Based Neural Network Verification

论文作者

Zhang, Huan, Wang, Shiqi, Xu, Kaidi, Li, Linyi, Li, Bo, Jana, Suman, Hsieh, Cho-Jui, Kolter, J. Zico

论文摘要

当与分支和绑定结合使用时,结合的传播方法是正式验证深神经网络属性(例如正确性,鲁棒性和安全性)的最有效方法之一。但是,现有作品无法处理在传统求解器中广泛接受的切割平面约束的一般形式,这对于通过凸出凸松弛而加强验证者至关重要。在本文中,我们概括了结合的传播程序,以允许添加任意切割平面的限制,包括涉及放宽整数变量的限制,这些变量不出现在现有的结合传播公式中。我们的广义结合传播方法GCP-crown为应用一般切割平面方法进行神经网络验证打开了机会,同时受益于结合传播方法的效率和GPU加速。作为案例研究,我们研究了由现成的混合整数编程(MIP)求解器生成的切割平面的使用。我们发现,MIP求解器可以生成高质量的切割平面,以使用我们的新配方来增强基于约束的验证器。由于以分支为重点的界限传播过程和以切削平面为中心的MIP求解器可以使用不同类型的硬件(GPU和CPU)并行运行,因此它们的组合可以快速探索大量具有强切割平面的分支,从而导致强大的验证性能。实验表明,与VNN-Comp 2021中最佳工具相比,我们的方法是第一个可以完全求解椭圆形20基准并验证椭圆形基准上的两倍的验证者,并且在广泛的Benchmarks上的最佳验证器也明显超过了最先进的验证器。 GCP-Crown是$α,\!β$ -Crown验证者的一部分,即VNN-COMP 2022获奖者。代码可在http://papercode.cc/gcp-crown上获得

Bound propagation methods, when combined with branch and bound, are among the most effective methods to formally verify properties of deep neural networks such as correctness, robustness, and safety. However, existing works cannot handle the general form of cutting plane constraints widely accepted in traditional solvers, which are crucial for strengthening verifiers with tightened convex relaxations. In this paper, we generalize the bound propagation procedure to allow the addition of arbitrary cutting plane constraints, including those involving relaxed integer variables that do not appear in existing bound propagation formulations. Our generalized bound propagation method, GCP-CROWN, opens up the opportunity to apply general cutting plane methods for neural network verification while benefiting from the efficiency and GPU acceleration of bound propagation methods. As a case study, we investigate the use of cutting planes generated by off-the-shelf mixed integer programming (MIP) solver. We find that MIP solvers can generate high-quality cutting planes for strengthening bound-propagation-based verifiers using our new formulation. Since the branching-focused bound propagation procedure and the cutting-plane-focused MIP solver can run in parallel utilizing different types of hardware (GPUs and CPUs), their combination can quickly explore a large number of branches with strong cutting planes, leading to strong verification performance. Experiments demonstrate that our method is the first verifier that can completely solve the oval20 benchmark and verify twice as many instances on the oval21 benchmark compared to the best tool in VNN-COMP 2021, and also noticeably outperforms state-of-the-art verifiers on a wide range of benchmarks. GCP-CROWN is part of the $α,\!β$-CROWN verifier, the VNN-COMP 2022 winner. Code is available at http://PaperCode.cc/GCP-CROWN

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源