论文标题

在自身形态组中的正常亚组上

On normal subgroups in automorphism groups

论文作者

Möller, Philip, Varghese, Olga

论文摘要

我们描述了右角Artin组$ {\ rm aut}(a_γ)$的自动形态组中几乎可以解决的普通亚组的结构。特别是,我们证明了$ {\ rm aut}(a_γ)$的有限正常子组最多有两个,如果$γ$不是集团,则任何有限的普通亚组($ {\ rm aut}(a_γ)$都是微不足道的。该属性对自动连续性和$ c^\ ast $ -Algebras具有影响:每个代数表达$φ\ colon l \ twheadHeadrightArrow {\ rm aut}(a_γ)(a_γ)(a_γ)$从本地紧凑的hausdorff group $ l $是连续的,并且仅是$a_γ$ n ies $ i是$ i是$ y是$ y是$ ysomor的, $ n \ geq 1 $。此外,如果$γ$不是一个联接,并且至少包含两个顶点,则在减少的组$ c^\ ast $ -Algebra of aut $(a_γ)$中,一组可逆元素的集合会密集。我们获得了$ {\ rm aut}(g_γ)$的类似结果,其中$g_γ$是环状组的图产品。此外,我们在定义图$γ$方面对Aut $(G_γ)$的中心进行了描述。

We describe the structure of virtually solvable normal subgroups in the automorphism group of a right-angled Artin group ${\rm Aut}(A_Γ)$. In particular, we prove that a finite normal subgroup in ${\rm Aut}(A_Γ)$ has at most order two and if $Γ$ is not a clique, then any finite normal subgroup in ${\rm Aut}(A_Γ)$ is trivial. This property has implications to automatic continuity and to $C^\ast$-algebras: every algebraic epimorphism $φ\colon L\twoheadrightarrow{\rm Aut}(A_Γ)$ from a locally compact Hausdorff group $L$ is continuous if and only if $A_Γ$ is not isomorphic to $\mathbb{Z}^n$ for any $n\geq 1$. Further, if $Γ$ is not a join and contains at least two vertices, then the set of invertible elements is dense in the reduced group $C^\ast$-algebra of Aut$(A_Γ)$. We obtain similar results for ${\rm Aut}(G_Γ)$ where $G_Γ$ is a graph product of cyclic groups. Moreover, we give a description of the center of Aut$(G_Γ)$ in terms of the defining graph $Γ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源