论文标题
使用高温超导体进行单光子检测
Single-photon detection using high-temperature superconductors
论文作者
论文摘要
单个光的检测对于量子计算,荧光寿命成像,单分子检测,遥感,相关光谱等重要。由于它们的宽带操作,高检测效率,出色的信噪比和快速恢复时间,超导纳米线单光子检测器(SNSPDS)已成为这些应用中的关键组成部分。基于常规超导体的SNSPD的操作(临界温度较低($ T_C $))需要昂贵且笨重的冷冻冷却器。这种动机探索了其他具有较高$ T_C $的超导材料,这些材料将在升高温度下进行单光子检测,但事实证明,这项任务非常困难。在这里,我们表明,通过适当的处理,高$ T_C $ CUPRATE超导体可以满足这一挑战。我们用薄薄的薄片$ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _ {8+δ} $和la $ _ {1.55} $ sr $ _ {0.45} $ _44 $ _4 $ _2 $ _2 $ _2 $ _2电影并展示了他们的单光子响应,分别高达$ 25 $和$ 8 $ K。通过光子计数速率(PCR)在辐射功率上的线性缩放率揭示了单光子操作。我们的两个基于铜的SNSPD都以技术非常重要的$ 1.5 $ $ $ $ $ $ $ M $ M $ M $ M $ M $ M $ M $ M $ M $ M $ M $ M $ M $ M $ M $ M $ M $ M $ M M电信波长表现出单光子的灵敏度。我们的工作扩大了SNSPD技术的超导材料家族,开放了提高温度天花板的前景,并提出了关于非常规超导体对单光子检测的基本机制的重要问题。
The detection of individual quanta of light is important for quantum computation, fluorescence lifetime imaging, single-molecule detection, remote sensing, correlation spectroscopy, and more. Thanks to their broadband operation, high detection efficiency, exceptional signal-to-noise ratio, and fast recovery times, superconducting nanowire single-photon detectors (SNSPDs) have become a critical component in these applications. The operation of SNSPDs based on conventional superconductors, which have a low critical temperature ($T_c$), requires costly and bulky cryocoolers. This motivated exploration of other superconducting materials with higher $T_c$ that would enable single-photon detection at elevated temperatures, yet this task has proven exceedingly difficult. Here we show that with proper processing, high-$T_c$ cuprate superconductors can meet this challenge. We fabricated superconducting nanowires (SNWs) out of thin flakes of Bi$_2$Sr$_2$CaCu$_2$O$_{8+δ}$ and La$_{1.55}$Sr$_{0.45}$CuO$_4$/La$_2$CuO$_4$ (LSCO-LCO) bilayer films and demonstrated their single-photon response up to $25$ and $8$ K, respectively. The single-photon operation is revealed through the linear scaling of the photon count rate (PCR) on the radiation power. Both of our cuprate-based SNSPDs exhibited single-photon sensitivity at the technologically-important $1.5$ $μ$m telecommunications wavelength. Our work expands the family of superconducting materials for SNSPD technology, opens the prospects of raising the temperature ceiling, and raises important questions about the underlying mechanisms of single-photon detection by unconventional superconductors.