论文标题

OpenMedia:在异质AI计算平台下的开源医学图像分析工具箱和基准

OpenMedIA: Open-Source Medical Image Analysis Toolbox and Benchmark under Heterogeneous AI Computing Platforms

论文作者

Zhuang, Jia-Xin, Huang, Xiansong, Yang, Yang, Chen, Jiancong, Yu, Yue, Gao, Wei, Li, Ge, Chen, Jie, Zhang, Tong

论文摘要

在本文中,我们介绍了OpenMedia,这是一个开源工具箱库,其中包含在异质人工智能(AI)计算平台下用于医学图像分析的丰富深度学习方法。各种医学图像分析方法,包括2D/3D医疗图像分类,分割,定位和检测,已包含在工具箱中,并在异构NVIDIA和HUAWEI ASCEND COMPULING SYSTEMS下使用Pytorch和/或Mindspore实现。据我们所知,OpenMedia是第一个提供比较Pytorch和Mindspore实现的开源算法库,并在几个基准数据集中进行了结果。源代码和模型可在https://git.openi.org.cn/openmedia上找到。

In this paper, we present OpenMedIA, an open-source toolbox library containing a rich set of deep learning methods for medical image analysis under heterogeneous Artificial Intelligence (AI) computing platforms. Various medical image analysis methods, including 2D/3D medical image classification, segmentation, localisation, and detection, have been included in the toolbox with PyTorch and/or MindSpore implementations under heterogeneous NVIDIA and Huawei Ascend computing systems. To our best knowledge, OpenMedIA is the first open-source algorithm library providing compared PyTorch and MindSpore implementations and results on several benchmark datasets. The source codes and models are available at https://git.openi.org.cn/OpenMedIA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源