论文标题
实时大规模MIMO渠道预测:深度学习和神经prophet的组合
Real-Time Massive MIMO Channel Prediction: A Combination of Deep Learning and NeuralProphet
论文作者
论文摘要
通道状态信息(CSI)至关重要,因为它使无线系统能够更准确地调整传输参数,从而改善了系统的整体性能。但是,在高度动态的环境中获取准确的CSI,这是一项挑战,这主要是由于多路褪色。不准确的CSI可能会恶化性能,特别是大量多输入多输出(MMIMO)系统的性能。本文适应了CSI预测的机器学习(ML)。具体而言,我们利用深度学习的时间序列模型(DL),例如复发性神经网络(RNN)和双向长期术语记忆(BILSTM)。此外,我们使用NeuralProphet(NP),这是一个最近引入的时间序列模型,由统计组件组成,例如自动回归(AR)和傅立叶项,用于CSI预测。受统计模型的启发,我们还开发了一个包括RNN和NP的新型混合框架,以实现更好的预测准确性。在德国斯图加特的诺基亚钟楼校园记录的实时数据集上评估了拟议的通道预测变量(CPS)性能。数值结果表明,与统计模型一起使用并展示鲁棒性时,DL会带来性能增长。
Channel state information (CSI) is of pivotal importance as it enables wireless systems to adapt transmission parameters more accurately, thus improving the system's overall performance. However, it becomes challenging to acquire accurate CSI in a highly dynamic environment, mainly due to multi-path fading. Inaccurate CSI can deteriorate the performance, particularly of a massive multiple-input multiple-output (mMIMO) system. This paper adapts machine learning (ML) for CSI prediction. Specifically, we exploit time-series models of deep learning (DL) such as recurrent neural network (RNN) and Bidirectional long-short term memory (BiLSTM). Further, we use NeuralProphet (NP), a recently introduced time-series model, composed of statistical components, e.g., auto-regression (AR) and Fourier terms, for CSI prediction. Inspired by statistical models, we also develop a novel hybrid framework comprising RNN and NP to achieve better prediction accuracy. The proposed channel predictors (CPs) performance is evaluated on a real-time dataset recorded at the Nokia Bell-Labs campus in Stuttgart, Germany. Numerical results show that DL brings performance gain when used with statistical models and showcases robustness.