论文标题
时间逻辑公式的可区分推断
Differentiable Inference of Temporal Logic Formulas
论文作者
论文摘要
我们演示了学习信号时间逻辑公式的第一个复发性神经网络体系结构,并介绍了公式推理方法的第一个系统比较。传统系统嵌入了许多未明确形式化的专业知识。对学习形式的形式规范具有极大的兴趣,这些规范表征了这种系统的理想行为 - 即,在时间逻辑中的公式被系统的输出信号所满足。这些规格可用于更好地了解系统的行为并改善其下一个迭代的设计。以前的推断方法假设某些公式模板,或者对所有可能的模板进行了启发式枚举。这项工作提出了一种神经网络架构,该架构通过梯度下降来渗透公式结构,从而消除了施加任何特定模板的需求。它将公式结构和参数的学习结合在一个优化中。通过系统的比较,我们证明了该方法的实现比列举和晶格方法相似或更好的错误分类率(MCR)。我们还观察到,不同的公式可以实现相似的MCR,从经验上证明了时间逻辑推断问题的不确定性。
We demonstrate the first Recurrent Neural Network architecture for learning Signal Temporal Logic formulas, and present the first systematic comparison of formula inference methods. Legacy systems embed much expert knowledge which is not explicitly formalized. There is great interest in learning formal specifications that characterize the ideal behavior of such systems -- that is, formulas in temporal logic that are satisfied by the system's output signals. Such specifications can be used to better understand the system's behavior and improve design of its next iteration. Previous inference methods either assumed certain formula templates, or did a heuristic enumeration of all possible templates. This work proposes a neural network architecture that infers the formula structure via gradient descent, eliminating the need for imposing any specific templates. It combines learning of formula structure and parameters in one optimization. Through systematic comparison, we demonstrate that this method achieves similar or better mis-classification rates (MCR) than enumerative and lattice methods. We also observe that different formulas can achieve similar MCR, empirically demonstrating the under-determinism of the problem of temporal logic inference.