论文标题

自适应多级子集仿真,具有选择性精炼

Adaptive multilevel subset simulation with selective refinement

论文作者

Elfverson, Daniel, Scheichl, Robert, Weissmann, Simon, DiazDelaO, F. Alejandro

论文摘要

在这项工作中,我们提出了一个自适应多级版本的子集模拟,以估计复杂物理系统罕见事件的可能性。给定一系列大小增加的嵌套故障域,罕见的事件概率表示为条件概率的产物。提出的新估计器使用不同的模型分辨率和嵌套故障集层次结构的不同样本。为了大大降低计算成本,我们构建了中间故障集,因此只需要少量昂贵的高分辨率模型评估,而大多数样品可以从廉价的低分辨率模拟中获取。我们新估计器中的一个关键想法是使用后验误差估计器与选择性网格细化策略相结合,以确保将模型分辨率从一个设置为下一个故障更改模型分辨率时可能违反的关键子集属性。理论上的转换以及数值从理论上研究了估计量的效率提高和统计特性。在地下流的模型问题上,新的多级估计器比标准子集仿真相比,实现相关相对误差为25%,超过了一个因子60。

In this work we propose an adaptive multilevel version of subset simulation to estimate the probability of rare events for complex physical systems. Given a sequence of nested failure domains of increasing size, the rare event probability is expressed as a product of conditional probabilities. The proposed new estimator uses different model resolutions and varying numbers of samples across the hierarchy of nested failure sets. In order to dramatically reduce the computational cost, we construct the intermediate failure sets such that only a small number of expensive high-resolution model evaluations are needed, whilst the majority of samples can be taken from inexpensive low-resolution simulations. A key idea in our new estimator is the use of a posteriori error estimators combined with a selective mesh refinement strategy to guarantee the critical subset property that may be violated when changing model resolution from one failure set to the next. The efficiency gains and the statistical properties of the estimator are investigated both theoretically via shaking transformations, as well as numerically. On a model problem from subsurface flow, the new multilevel estimator achieves gains of more than a factor 60 over standard subset simulation for a practically relevant relative error of 25%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源