论文标题

通过控制位置偏差来改善微观效力建议

Improving Micro-video Recommendation by Controlling Position Bias

论文作者

Yu, Yisong, Jin, Beihong, Song, Jiageng, Li, Beibei, Zheng, Yiyuan, Zhu, Wei

论文摘要

随着微观视频应用程序流行,微观视频和用户的数量迅速增加,这突出了Micro-Video建议的重要性。尽管微视频建议可以自然视为顺序推荐,但先前的顺序建议模型并未完全考虑微视频应用程序的特征,并且在其电感偏见中,位置的作用与微观Video场景中的现实不符。因此,在本文中,我们提出了一个名为PDMREC的模型(位置解耦的微视频推荐)。 PDMREC应用单独的自我发项模块来对微观视频信息和位置信息进行建模,然后将它们汇总在一起,避免微观效率语义与所编码的位置信息之间的嘈杂相关性。此外,PDMREC提出了对比度学习策略,这些学习策略与微观视频场景的特征非常匹配,从而减少了序列中微视频位置的干扰。我们对两个现实世界数据集进行了广泛的实验。实验结果表明,PDMREC的表现优于现有的多个最新模型,并实现了重大的性能提高。

As the micro-video apps become popular, the numbers of micro-videos and users increase rapidly, which highlights the importance of micro-video recommendation. Although the micro-video recommendation can be naturally treated as the sequential recommendation, the previous sequential recommendation models do not fully consider the characteristics of micro-video apps, and in their inductive biases, the role of positions is not in accord with the reality in the micro-video scenario. Therefore, in the paper, we present a model named PDMRec (Position Decoupled Micro-video Recommendation). PDMRec applies separate self-attention modules to model micro-video information and the positional information and then aggregate them together, avoid the noisy correlations between micro-video semantics and positional information being encoded into the sequence embeddings. Moreover, PDMRec proposes contrastive learning strategies which closely match with the characteristics of the micro-video scenario, thus reducing the interference from micro-video positions in sequences. We conduct the extensive experiments on two real-world datasets. The experimental results shows that PDMRec outperforms existing multiple state-of-the-art models and achieves significant performance improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源